A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites.

نویسندگان

  • Jie Song
  • Eduardo Saiz
  • Carolyn R Bertozzi
چکیده

As a first step toward the design and fabrication of biomimetic bonelike composite materials, we have developed a template-driven nucleation and mineral growth process for the high-affinity integration of hydroxyapatite with a poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel scaffold. A mineralization technique was developed that exposes carboxylate groups on the surface of cross-linked pHEMA, promoting high-affinity nucleation and growth of calcium phosphate on the surface, along with extensive calcification of the hydrogel interior. Robust surface mineral layers a few microns thick were obtained. The same mineralization technique, when applied to a hydrogel that is less prone to surface hydrolysis, led to distinctly different mineralization patterns, in terms of both the extent of mineralization and the crystallinity of the apatite grown on the hydrogel surface. This template-driven mineralization technique provides an efficient approach toward bonelike composites with high mineral-hydrogel interfacial adhesion strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone.

The controlled integration of organic and inorganic components confers natural bone with superior mechanical properties. Bone biogenesis is thought to occur by templated mineralization of hard apatite crystals by an elastic protein scaffold, a process we sought to emulate with synthetic biomimetic hydrogel polymers. Cross-linked polymethacrylamide and polymethacrylate hydrogels were functionali...

متن کامل

Cytotoxity Assessment of Gold Nanoparticle-Chitosan Hydrogel Nanocomposite as an Efficient Support for Cell Immobilization: toward Sensing Application

Cell-based biosensors have become a research hotspot in biosensors and bioelectronics fields. The main feature of cell-based biosensors is the immobilization of living cell on the surface of transducers. Different types of polymers which are used as scaffolds for cell growth should be biocompatible and have reactive functional groups for further attachment of biomolecules. In this work, the cel...

متن کامل

Mechanical performance of three-dimensional bio- nanocomposite scaffolds designed with digital light processing for biomedical applications

Introduction: The need for biocompatible and bioactive scaffolds to accelerate the regeneration and repair of fractured bones has been considered for bone tissue engineering applications during recent decades. The new methods were developed to produce scaffolds to improve the tissue quality, size of cavities, control the porosity and increase the scaffold compressive strength u...

متن کامل

Fabrication and Characterization of Collagen/Apatite Scaffolds with Intrafibrillar Mineralized Collagen Fibers

Changmin Hu, Mei Wei. Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA. Statement of Purpose: Natural bone is an outstanding organic-inorganic nanocomposites consisting primarily of collagen fibrils and hydroxyapatite (HA) crystals, which provides skeletal and metabolic functions of the natural bone. Many researche...

متن کامل

Histomorphometric and immunohistochemical evaluation of angiogenesis in local ischemia by tissue engineering method in rat: Role of mast cells

The aim of this study was to find a proper method for improvement of ischemic condition in the rat hind limb and also to observe the efficacy of cell engraftment with alginate/gelatin three-dimensional scaffolds. Eighteen male Wistar rats weighing 200 to 250 g were randomly divided into three groups (n = 6) including a) ischemia group; in which femoral artery was removed after ligation at the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 125 5  شماره 

صفحات  -

تاریخ انتشار 2003